PRAKTIKUM KIMIA

Praktikum Kimia XII

Oleh v.i.d

 
i
 


TITIK BEKU LARUTAN (KELAS XII)


Tujuan : Untuk mengetahui titik beku beberapa larutan.

Alat dan Bahan :
Alat dan Bahan
1. Neraca 6. Air
2. Tabung reaksi 7. Es batu
3. Sendok 8. Urea 1 M dan 2 M
4. Pengaduk 9. Garam
5. Gelas kimia 10. NaCl 1 M dan 2 M
Cara Kerja :
  1. Masukkan butiran-butiran es batu dalam gelas kimia plastic sampai kira-kira ¾ nya. Tambahkan 4 sendok makan garam dapur. Aduk campuran ini dengan pengaduk. Campuran ini ada campuran pendingan.
  2. Isi tabung reaksi dengan air suling sebanyak 5 ml. Masukkan tabung ke dalam gelas kimia berisi campuran pendingin sambil mengaduk campuran pendingin sampai air membeku seluruhnya.
  3. Keluarkan tabung reaksi dari campuran pendingin. Dengan hati-hati aduklah campuran dari tabung itu dengan menggunakan termometer secara naik turun. Bacalah termometer dan catat suhu campuran es dan air. Ulangi cara kerja 2 dan 3 dengan menggunakan larutan urea 1 M dan 2 M, larutan NaCl 1 M dan 2 M sebagai pengganti air suling.
Pengamatan :
Zat Tf °C Δ Tf °C
Air 2 0
Urea 1 M 0 2
Urea 2 M -2 4
NaCl 1 M -2 4
NaCl 2 M -5 7
Δ Tf = Tfp – Tfl
Dasar Teori :
Titik beku adalah suhu pada P tertentu di mana terjadi perubahan wujud zat cair ke padat. Pada tekanan 1 atm, air membeku pada suhu 0 °C karena pada suhu itu tekanan uap air sama dengan tekanan uap es. Selisih antara titik beku pelarut dengan titik beku larutan disebut penurunan titik beku (Δ Tf = freezing point depression). Pada percobaan ini ditunjukkan bahwa penurunan titik beku tidak bergantung pada jenis zat terlarut, tetapi hanya pada konsentrasi partikel dalam larutan. Oleh karena itu, penurunan titik beku tergolong sifat koligatif.
Pengamatan dan Perhitungan :
No. Zat Terlarut Titik Beku Perbedaan Titik Beku
Rumus Massa Mol Kemolaran Air Larutan
1. CO (NH2)2 180 3 1 0 0 2
2. CO (NH2)2 180 3 2 0 -2 4
3. NaCl 117 2 1 0 -2 4
4. NaCl 117 2 2 0 -5 7
Kesimpulan :
  1. Titik beku adalah suhu pada P tertentu di mana terjadi peristiwa perubahan wujud zat cair ke padat.
  2. Selisih antara titik beku pelarut dengan titik beku larutan disebut penurunan titik beku (Δ Tf = Tfp – Tfl).
  3. Penurunan titik beku tidak bergantung pada jenis zat terlarut, tetapi hanya pada konsentarsi partikel dalam larutan.
  4. Penurunan titik beku tergolong sifat koligatif.
  5. Larutan elektrolit memiliki titik beku lebih rendah dibanding larutan nonelektrolit.
Daftar Pustaka
  • Purba, Michael. 2007. Kimia untuk SMA Kelas XII. Jakarta: Erlangga.



ELEKTROLISIS (KELAS XII)
Tujuan : Untuk mempelajari perubahan yang terjadi pada elektrolisis larutan garam Natrium sulfat dan Kalium yodida.
Alat dan Bahan :
Alat dan Bahan Ukuran/satuan Jumlah
Tabung U - 2
Elektroda karbon dan kabel 0,5 m 2/2
Baterai/catudaya 1,5 V 4/1
Jepit buaya - 4
Statif dan klem - 1/1
Tabung reaksi dan rak - 4/1
Pipet tetes - 1
Gelas kimia 100 cm3 3
Larutan Natrium sulfat 0,5 M 50 cm3
Larutan Kalium yodida 0,5 M 50 cm3
Fenoftalein - Sebotol
Indikator universal

Larutan kanji/amilum

Cara Kerja :
  1. Pasang alat elektrolisis.
  2. Elektrolisis larutan Na2SO4.
Tambahkan 10 tetes indikator universal ke dalam ± 50 cm3 larutan Na2SO4 dalam gelas kimia. Tuangkan larutan ini ke dalam tabung U sampai 1,5 cm dari mulut tabung. Celupkan elektroda karbon ke dalam masing-masing tabung U, dihubungkan kedua elektroda dengan sumber arus searah 6 V selama beberapa menit. Catat perubahan warna yang terjadi dalam kedua kaki tabung U itu.
  1. Elektrolisis larutan KI.
  2. Masukkan larutan KI ke dalam tabung U sampai 1,5 cm dari mulut tabung. Celupkan kedua elektroda karbon ke dalam masing-masing kaki tabung U dan hubungkan elektroda itu dengan sumber arus searah 6 V selama ± 5 menit. Catat perubahan yang terjadi  pada tiap-tiap elektroda.
  3. Keluarkan dengan hati-hati kedua elektroda, cium baunya dan catat.
  4. Pipet 2 cm3 larutan dari ruang katoda ke dalam 2 tabung reaksi tambahkan setetes penoftalein pada tabung 1 dan beberapa tetes larutan Amilum pada tabung 2.
  5. Ulangi cara kerja ini dengan larutan dari ruang anoda. Amati dan catat yang terjadi.
    1. Elektrolisis larutan Na2SO4.
Hasil larutan + indicator universal
  1. Sebelum dielektrolisis?
  2. Sesudah dielektrolisis
  • Pada ruang katoda?
  • Pada ruang anoda?
Pembahasan :
  1. Na2SO4 → 2 Na+ + SO42- + 10 tetes indikator universal
A (+)                : 2 H2O → 4 H+ + O2 + 4 e
K (-) : 2 H2O + 2 e → 2 OH- + H2
Na2SO4 + 6 H2O → 2 Na+ + SO42- + 4 H+ + 4 OH- + O2 + 2 H2
Katoda           : NaOH + gas H2
Anoda            : H2SO4 + gas O2
2. KI → K+ + I-
A (+)                : 2 I- → I2 + 2 e
K (-) : 2 H2O + 2 e → 2 OH- + H2
2 KI + 2 H2O → 2 K+ + I2 + 2 OH- + H2
2 KI + 2 H2O → 2 KOH + I2 + H2
Katoda           : KOH + gas H2

Dasar Teori :
Sel elektrolisis merupakan kebalikan dari sel volta. Dalam sel elektrolisis, listrik digunakan untuk melangsungkan reaksi redoks tak spontan. Sel elektrolisis terdiri dari sebuah electrode, elektrolit, dan sumber arus searah. Electron memasuki sel elektrolisis melelui kutub negatif (katoda). Spesi tertentu dalam larutan menyerap electron dari katoda dan mengalami reduksi. Sedangkan spesi lain melepas electron di anoda dan mengalami oksidasi.
Reaksi elektrolisis terdiri dari reaksi katoda, yaitu reduksi, dan reaksi anoda, yaitu oksidasi. Spesi yang terlibat dalam reaksi katoda dan anoda bergantung pada potensial elektroda dari spesi tersebut. Ketentuannya sebagai berikut.
  • Spesi yang mengalami reduksi di katoda adalah spesi yang potensial reduksinya terbesar.
  • Spesi yang mengalami oksidasi di anoda adalah spesi yang potensial oksidasinya terbesar.
Sel elektrolisis terbagi menjadi 2, yaitu:
  1. Elektrolisis larutan elektrolit.
  2. Elektrolisis larutan non elektrolit.
Elektroda dalam sel elektrolisis terbagi menjadi 2, yaitu:
  1. Elektroda inert/tidak aktif (elektroda karbon, platina, dan emas)
  2. Elektroda selain inert/aktif.
Kesimpulan :
  1. Reaksi elektrolisis terdiri dari reaksi katoda (reduksi) dan reaksi anoda (oksidasi).
  2. Sel elektrolisis terbagi menjadi 2, yaitu elektrolisis larutan elektrolit dan elektrolisis leburan elektrolit.
  3. Elektroda dalam sel elektrolisis terbagi menjadi 2, yaitu elektroda inert dan elektroda selain inert.
Daftar Pustaka
  • Purba, Michael. 2007. Kimia untuk SMA Kelas XII. Jakarta: Erlangga.
HALOGEN (KELAS XII)
Tujuan : Mempelajari daya oksidasi halogen terhadap Fe2+ dan daya reduksi ion halide terhadap Fe3+.
Alat dan Bahan :
Alat dan Bahan Ukuran/satuan Jumlah
Tabung reaksi - 8
Rak tabung reaksi - 1
Pipet tetes - 9
Larutan Klorin - 1 ml
Larutan Bromin - 1 ml
Larutan Iodin - 1 ml
Larutan Besi (II) sulfat 0,1 M 2 ml
Larutan Besi (III) sulfat 0,1 M 2 ml
Larutan Natrium klorida 0,1 M 1 ml
Larutan Natrium bromide 0,1 M 1 ml
Larutan Kalium Iodida 0,1 M 1 ml
Larutan Kalium tiosianat (KSCN) 0,1 M 2 ml

Cara Kerja :
  1. Membedakan ion Fe2+ dan ion Fe3+.
Ambil dua tabung reaksi, masukkan 10 tetes larutan FeSO4 0,1 M ke dalam tabung pertama dan masukkan 10 tetes larutan Fe2(SO4)3 0,1 M ke dalam tabung kedua. Tambahkan 5 tetes larutan KSCN 0,1 M pada masing-masing tabung, guncangkan tabung, amati, dan catat pengamatan Anda.
  1. Daya oksidasi halogen.
  2. Siapkan tiga tabung reaksi bersih dan masukkan ke dalam tabung reaksi berturut-turut 10 tetes larutan Klorin pada tabung pertama, 10 tetes larutan Bromin pada tabung kedua, 10 tetes larutan Iodin pada tabung ketiga, dan amati warna tabung masing-masing larutan. Kemudian tambahkan pada masing-masing tabung reaksi 10 tetes larutan FeSO4 0,1 M.
  3. Apakah pada ketiga tabung di atas terjadi oksidasi ion Fe2+ ujilah dengan larutan KSCN 0,1 M masing-masing 3 tetes. Catat warna setelah ditambah dengan larutan KSCN 0,1 M. untuk mengetahui banyak sedikitnya ion Fe3+ yang ada dalam tabung dapat dilakukan dengan menambah aquades pada tabung reaksi yang berisi ion Fe3+ hingga penuh.
    1. Daya reduksi halida.
Ambil tiga tabung reaksi dan masukkan 10 tetes larutan Fe2(SO4)3 0,1 M ke dalam masing-masing tabung reaksi, kemudian 10 tetes larutan NaCl 0,1 M ke dalam tabung 1, 10 tetes larutan NaBr 0,1 M ke dalam tabung 2, 10 tetes larutan KI 0,1 M ke dalam tabung 3, bandingkan warna. Cermati dan catat mana yang terjadi reduksi ion Fe3+.
Hasil Pengamatan :
  1. Membedakan ion Fe2+ dan ion Fe3+
Larutan Senyawa Besi Perubahan Warna setelah Penambahan Larutan KSCN
FeSO4 atau Fe2+ Pekat
Fe2(SO4)3 atau Fe3+ Lebih pekat
  1. Daya pengoksidasi halogen
Larutan Halogen Perubahan Warna setelah Penambahan
Larutan FeSO4 Larutan Fe2(SO4)3
Cl2 Bening Coklat kemerahan
Br2 Bening Coklat oranye
I2 Coklat Coklat pekat
  1. Daya reduksi halide
Warna Larutan Fe2(SO4)3 Ditambah Larutan Perubahan yang Terjadi
Bening NaCl Kuning muda
Bening NaBr Kuning oranye
Bening KI oranye
Dasar Teori :
Halogen berasl dari bahasa Yunani yang berarti “pembentuk garam”. Dinamai demikian karena unsure-unsur tersebut bereaksi dengan logam membentuk garam. Unsure-unsur halogen mempunyai 7 elektron valensi pada subkulit ns2 np5. Konfigurasi elektron yang demikian membuat unsur-unsur halogen bersifat sangat reaktif. Halogen cenderung menyerap 1 elektron membentuk ion bermuatan negatif satu.
Dalam bentuk unsur, halogen (X) terdapat sebagai molekul diatomik (X2). Molekul X2 mengalami disosiasi menjadi atom-atomnya. X2(g) → 2 X(g). Pada suhu kamar, fluorin dan klorin berupa gas, bromin berupa zat cair yang mudah menguap, sedangkan iodin berupa zat padat yang mudah menyublim. Halogen mempunyai warna dan aroma tertentu. Fluorin berwarna kuning muda, Klorin berwarna hijau muda, Bromin berwarna merah tua, Iodin padat berwarna hitam, sedangkan uap Iodin berwarna ungu. Semua halogen berbau rangsang dan menusuk, serta bersifat racun. Kata Klorin, Iodin, dan Bromin berasal dari bahasa Yunani yang artinya berturut-turut adalah hijau, violet (ungu), dan bau pesing (amis). Larutan halogen juga berwarna. Larutan Klorin berwarna hijau muda, larutan Bromin berwarna coklat merah, dan larutan Iodin berwarna coklat. Dalam pelarut tak beroksigen, seperti Tetraklorida (CCl4) atau Kloroform, Iodin berwarna ungu.
1)    Reaksi halogen dengan logam.
X2 + L → I A   LX
II A   LX2
III A   LX3
2)    Reaksi halogen dengan hidrogen.
H2 + X2 → 2 HX
3)    Reaksi halogen dengan nonlogam dan metalloid tertentu. Reaksi dengan Fosfarus, Arsen, dan Antimon menghasilkan trihalida jika halogennya terbatas, atau pentahalida jika halogennya berlebihan.
P4 + 6 Cl2 → 4 PCl3
P4 + 10 Cl2 → 4 PCl5
4)    Reaksi halogen dengan air.
X2 + H2O → HX + O2
5)    Reaksi halogen dengan basa Klorin, Bromin, dan Iodin mengalami reaksi disproporsional dalam basa.
6)    Reaksi antarhalogen.
X2 + n Y2 → 2 XYn
Hasil Pengamatan :
  1. Membedakan ion Fe2+ dan ion Fe3+
Larutan Senyawa Besi Perubahan Warna + Larutan KSCN
FeSO4 atau Fe2+ Merah coklat
Fe2(SO4)3 atau Fe3+ Merah coklat (lebih tua)
  1. Daya oksidasi halogen
Larutan Halogen Perubahan Warna setelah Penambahan
Larutan FeSO4 Larutan Fe2(SO4)3
Cl2 Putih bening Lebih tua
Br2 Kuning jernih Agak muda
I2 Merah betadine Lebih muda
  1. Daya reduksi halide
Warna Larutan Fe2(SO4)3 Ditambah Larutan Perubahan Warna yang Terjadi
Bening NaCl Lebih tua dibanding Cl2
Bening NaBr Lebih tua dibanding Br2
Bening KI Lebih muda dibanding I2
Kesimpulan :
  1. Daya reduksi halogen dari Cl ke I makin bertambah terlihat dari warna larutan yang semakin tua sehingga mendekati larutan Fe2(SO4)3 padahal warna yang diharapkan menuju FeSO4.
  2. Daya oksidasi halogen dari Cl ke I makin berkurang terlihat dari warna larutan yang semakin muda sehingga mendekati larutan FeSO4 padahal warna yang diharapkan menuju Fe2(SO4)3
Daftar Pustaka
  • Purba, Michael. 2007. Kimia untuk SMA Kelas XII. Jakarta: Erlangga.



UJI PROTEIN (KELAS XII)
Tujuan :
  1. Mengetahui adanya ikatan peptida dalam protein dengan tes biuret.
  2. Mengetahui adanya inti benzena dengan uji Xanthoproteat.
  3. Mengetahui adanya ikatan belerang (S) dengan uji Timbal asetat.
Alat dan Bahan :
Alat dan Bahan
Gelas kimia Agar-agar
Pipet tetes Gelatin
Tabung reaksi Kapas
Penjepit tabung Larutan Tembaga (II) asetat 1% (CuSO4)
Kaki 3 dan kasa Larutan Natrium hidroksida 6 M (NaOH)
Spatula kaca Larutan Natrium hidroksida 3 M (NaOH)
Gelas Ukur Larutan Timbal (II) asetat {Pb (CH3COO)2}
Susu Larutan CH3COOH 3 M
Cara Kerja :
  1. Uji biuret
Jika positif (+) akan berwarna ungu.
  • Masukkan 1 ml putih telur ke dalam tabung reaksi. Tambahkan ± 2-3 tetes CuSO4. Kemudian masukkan 1 ml NaOH 0,1 M. amati perubahan yang terjadi.
  • Ulangi cara kerja tersebut menggunakan susu, gelatin, agar-agar, dan kapas. Bila ada yang tidak larut setelah ditambahkan NaOH, panaskan dahulu beberapa menit hingga semua larut, lalu dinginkan.
  1. Tes Xanthoproteat
Untuk mendeteksi ada tidaknya inti benzena.
Jika positif (+) berwarna kuning jingga.
  • Masukkan 1 ml putih telur ke dalam tabung reaksi. Tambahkan 2 tetes HNO3 pekat, panaskan selama ± 2 menit. Kemudian dinginkan, setelah dingin masukkan NaOH 6 M tetes demi tetes hingga berlebih. Amati perubahan yang terjadi.
  • Ulangi cara kerja tersebut dengan menggunakan susu, gelatin, agar-agar, dan kapas.
  1. Uji Timbal asetat
Untuk menguji ada tidaknya ikatan belerang (S).
Jika positif (+) akan berwarna kehitaman.
  • Masukkan 1 ml putih telur ke dalam tabung reaksi. Tambahkan 0,5 ml NaOH 6 M dan panaskan ± 2 menit. Kemudian dinginkan, setelah itu masukkan 2 ml CH3COOH 3 M. tutup tabung reaksi dengan kertas saring yang sudah dibasahi dengan  Pb(CH3COO)2. Panaskan ± 2 menit. Amati perubahan yang terjadi.
  • Ulangi langkah kerja tersebut menggunakan susu, gelatin, agar-agar, dan kapas.
Hasil Pengamatanm :
Bahan Uji Biuret Uji Xanthoproteat Uji Timbal asetat
Putih telur Ungu (+) Oranye (+) Tidak hitam (-)
Susu Ungu (+) Oranye (+) Hitam (+)
Gelatin Ungu (+) Kuning (+) Hitam (+)
Agar-agar Ungu (+) Oranye (+) Hitam (+)
Kapas Biru (-) Putih bening (-) Hitam (+)
Kesimpulan :
  1. Ikatan peptida bereaksi dengan larutan biuret akan berwarna ungu. Sedangkan yang tidak berwarna ungu berarti mengandung glikosida.
  2. Inti benzena bereaksi dengan larutan Xanthoproteat akan berwarna kuning jingga.
  3. Ikatan S bereaksi dengan larutan Timbal asetat akan berwarna hitam pada kertas saring.

Komentar

Postingan populer dari blog ini

TEORI EVOLUSI DARWIN VS LAMARCK

Elektrolisis Larutan Kalium Iodida

Teori Evolusi Darwin Lengkap dan teori penciptaan khusus